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I•TRODUCT•O• 

With the advent of radio broadcasting and sound pictures very 
"dead" rooms have been built, and the significant problem of just how 
much reverberation should be used in broadcasting and recording pre- 
sents itself. The direct measurement of reverberation time or its cal- 

culation by the aid of a reliable formula, then, is an important aspect of 
applied acoustics. A reverberation time formula enables one to calcu- 
late the reverberation time once the volume, surface area and average 
absorption coefficient of the surface of the room are known; or if the 
reverberation time is measured it enables one to calculate the average 
coefficient of absorption of the surface treatment. A correct reverbera- 
tion time formula is, therefore, much to be desired. 

Theories of reverberation leading to Sabine's reverberation time 
equation have been given by W. C. Sabine (1900), • Franklin (1903)? 
Jaeger (1911), a Buckingham (1925). 4 Recently Schuster and Waetz- 
mann (1929)* have pointed out that Sabine's formula is essentially a 
"live" room formula and they have shown as we also show that the re- 
verberation time equation varies somewhat with the shape of the room. 
The present paper presents an analysis based on the assumption that 
image sources may replace the walls of a room in calculating the rate of 
decay of sound intensity after the sound source is cut off, which gives a 
form of reverberation time equation more general than Sabine's; it 
points out the difference between the basic assumptions leading to the 
two types of formulae; it adds experimental data which support the 
more general type; and it ends with the conclusion that no one formula 
without modification is essentially all inclusive. 

R•V•RBV. t•AT•ON TIu• FORUU• 

Sabine's Formula. If sound is emitted at a constant rate in a room, 

the sound energy density will build up till an equilibrium is reached 
' W. C. Sabine, Collected Papers on Acoustics. 
• Franklin, Phys. Rev. 16, 372 1903. 
a Jaeger, Wiener Akad, Ber, Math.-N'aturw, Klasse, Bd. 120 Abt. IIa, 1911. 
• Buckingham, Bur. Standards, Sci. Paper, No. 506, 1925. 
a Schuster and Waetzmann, Ann. d. Phys. March 1929; also Textbook by Muller-Pouillet, 

Vol. on Acoustics Chapter VII, pp. 456-460. 
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between the energy emitted and the energy absorbed. When the source 
is turned off, this energy density will drop off at a rate depending on the 
absorbing power of the walls and fixtures. Early in his researches Sabine 
found "the general applicability of the hyperbolic law of inverse propor- 
tionality" between reverberation time and absorbing power as given by 
the relation 

KV 
r= (1) 

where T is the duration of residual sound, V the volume of the room, 
and a the absorbing power of the walls. Standardizing reverberation 
time as the time required for the intensity of sound to drop to one 
millionth of its value, Sabine determined the constant K, and obtained 
in English units, 

0.051/ 0.05V 
r= =-- (2) 

fl, Sot a 

where S is the surface of the room and or, is the average coefficient of 
absorption defined by the relation 

ot• = = ---- (3) 
s•+s•+sa+ ß . . S 

where s•, a•, s•, a,., etc., are the elements of surface and the correspond- 
ing absorption coefficients, and S is the total surface. This method of 
averaging assigns equal weights to the elements of surface, which means 
that it tacitly assumes a perfectly diffuse condition of the energy den- 
sity. If, on the other hand, an ordered condition exists, proper weights 
will need to be assigned to the elements of surface. 

Although Sabine tested his reverberation time formula for rooms of 
various shapes and volumes, ranging from a "small committee room to 
a theatre having a seating capacity of nearly fifteen hundred," he did 
not increase the absorption power to the extent that the rooms became 
"dead," the majority of reverberation times ranging from 4 sec. to 1.5 
sec. Thus Sabine did not test his formula in "dead" rooms and no doubt 

he did not expect it to have a meaning for the extreme case when the 
average coefficient is unity, for under this condition there can be no 
hang over of sound and hence no reverberation time, except as one 
wrongly calls the time for sound to travel from the source to the ob- 
server a reverberation time. Yet formula (2) does not become zero but 
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simply reduces to T = 0.05 V/S for this extreme case of absorption, and 
the reverberation time, strange as it may seem, becomes a function of 
the shape of the room, and reduces to zero only when S becomes very 
much greater than V. What meaning the equation has for the out-of- 
doors is certainly very vague. It is evident that the formula fails for this 
extreme case, and it seems natural to test its validity also for very 
"dead" rooms. 

Recent experiments in the Sound Stage, Sound Picture Laboratory, 
Bell Telephone Laboratories, indicate the failure of Sabine's formula 
when the average absorption coefficient for a room is rather high-- 
above 0.5. The results are recorded in another part of this paper. 

The More General Formula. Although Sabine's formula had its begin- 
ning in the experimental study of "live" rooms, it is also derivable from 
a theorectical study. A careful analysis of the theoretical basis of rever- 
beration theory is, therefore, important in the development of a new 
formula. 

This necessary analysis is aided by the method of images. Just as a 
plane mirror produces an image of a source of light, so also will a 
reflecting wall with dimensions large as compared with the wave length 
of the sound wave produce the image of a source of sound. An image 
will be produced at each reflection. In a rectangular room, the source 
images will be discretely located through space. This infinity of image 
sources may replace the walls of the room, for they will produce an 
energy density at a point in the room just as if they were absent and the 
walls were present. 

One may picture the building up of the sound as follows. As soon as 
the source is turned on the infinity of image sources are at that instant 
all turned on. The walls are imagined removed, and hence at a given 
place in the former enclosure sound energy will begin to arrive first 
from the source, then from the first reflection image sources, then from 
the second reflection image sources, and so on till the energy arrives 
from the most distant sources. 

The decay of sound may be pictured thus. When the source is stop- 
ped one may imagine that all the image sources are simultaneously 
stopped. The first drop will be heralded by the direct wave, then a 
series of drops by the waves from the first reflection image sources, then 
drops from the second reflection image sources and so on, and so on, till 
the contribution of all the remaining image sources is not sufficient to 
affect the hearing. Thus the decay ends. The effect of all the image 
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sources is a million times greater than the effect of all those located 
beyond a distance cT; this is the meaning of reverberation time T in the 
new picture, c being the speed of sound in air. 

We wish to emphasize that this picture which gives the details of the 
decay, involving as it does the geometry of the room, the distribution of 
the absorbing material, the discontinuous nature of the energy. decay, 
and interference phenomena, is fundamental in developing reverbera- 
tion theory. Just how many details we shall represent by averages de- 
pends upon the degree of simplification desired. We shall ignore inter- 
ference phenomena in the following considerations, and accordingly we 
shall attempt to make reverberation time meter measurements indepen- 
dent of this effect. We shall, following Sabine's experimental results, 
assume that a, defined by equation (3) may be considered as the uni- 
form absorption coefficient of the walls; yet we realize that for an 
ordered condition of the sound waves this procedure may need to be 
modified. We shall apply the method of images first to a few special 
cases involving rooms of simple geometrical form in order that later we 
may with better understanding approach the general case. 

Consider a spherical room of diameter D and volume V, with uniform 
absorption over the surface and with a sound source emitting ff energy 
units per second located at its center. In a time D/2c sec. after the 
source is turned on, the sphere will be filled with energy directly from 
the source of average density •D/2cV, and then a first reflection will 
begin. The reflected wave will travel back to the center, then spread 
out and in a time D/c sec. after the reflection first started a second reflec- 
tion will begin. The average density due to the first reflected energy 
then is •DR/Vc where R is the coefficient of reflection defined by the 
relation 

R = (1 - (4) 

After another D/c sec. interval, the third reflection will begin and the 
average energy density of the second reflected energy is, •DR=/I7c. As 
time proceeds, at the end of each D/c interval, a new reflection begins 
and a new increment will have been added to the total average density 
of the enclosure. Finally equilibrium is established and the total average 
energy density is given by the infinite sum 

ED/1 

S**=-• k-•-+R+R2+R3+ . . . R'•+ . . . ). (5) 
When the source is turned off, the decay begins. At a point of observa- 
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tion near the center the energy directly from the source stops, then in 
D/c seconds the average energy represented by the second term of 
equation (5) vanishes; in D/c seconds more the third term vanishes, etc., 
etc. The total average energy at any D/c interval during the decay will 
be given by the equation 

Fro. 1. Illustrating a source at the center of a spherical room and a seriea 
of spherical concentric image sheets. 

•DR • 62 cS log• (1 --a•)t 
S•--S,•=---- -- e (6) 

Vc(1--R) Sa•c 6V 

remembering that n=ct/D, that R= (l-aa), and that for a sphere 
D = 6V/S. We must keep in mind that t is not a continuous function 
but given by, t = nD/c Where n is an integer, and also that the absorbing 
material is assumed uniformly distributed over the surface. 
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One may interpret the process just described by the aid of the 
method of images. The walls are imagined removed and image sources 
are substituted. These images are imagined to be spherical concentric 
sheets. (See Figure 1). They are separated by a distance D, the distance 
between two successive reflections. The first image sheet contributes to 
the enclosure the average energy density given by the second term of 

5 5 

3 

Fro. 2. Illustrating a source at the center of a cylindrical roo•n and a series 
of ½oncentri• ½irc•dar line image sources. 

equation (5), the second one the amount given by the third term, etc., 
etc. When the source stops emitting energy all the image sheets do 
likewise. The persistence of sound is due to the fact that it takes time 
for the end of a sound wave which marks the termination of energy 
emission from a particular image sheet to reach the enclosure. The 
decay goes down in steps; due to the definition of reverberation time the 
end of the wave from a sheet located at a distance cT from the source 

passes thru the enclosure at the instant the intensity reaches one mil- 
lionth of its original value. 

Next consider a cylindrical room with diameter d equal to length, 
with uniform absorption over the surface and with a source at its cen- 
ter. Using the method of images we note that the source may be 
imagined imaged in the cylindrical walls as a series of concentric circular 
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line sources, and in the plane ends as a series of point sources, which in 
turn are imaged in the projected cylinder as concentric line image 
sources. (See Figure 2.) The numbers indicate the order of the reflection 
and if images of the same order are included in a surface, we shall have a 
series of concentric cones separated by g distance •x/2d. If we iden- 
tify this as the average distance between reflections t we may replace D 

Fro. 3. lllnstralbtg a source at the center of a cublral room and a series of point image sources. 

of equation (6) by this value, and remembering that d=6V/S for an 
enclosure of this sort we rewrite (6) and obtain the following decay 
equation for a point near the center of this cylindrical room, 

3v•E cS 1og• (1 
S•--S• • e (7) 

S•c 3x/• 

The same method may be applied to a cubicM room with the source 

• Schuster and Wae•man 1•. cit. have obtained these values by a more rigorous method. 
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at its center. The images are point sources and are located discretely 
throughout space as shown in Figure 3. As before the numbers indicate 
the order of reflection, and if the image sources of the same order are 
included in a given surface we get a series of plane surfaces separated by 
the distance • 3 ax/ d, where d is the length of the cubical room. Identify- 
ing this distance as the average distance between reflections 6 and re- 
membering that for a cube d=6V/S, we have from equation (6) the 

Fro. 4. Illustrating zones of imag* sonroes. 

following decay equation for a point near the center of the cubical 
room, 

2x/g•2 c,S 1og• (1 
Sotoe 2x/3 V 

Formula (7) is valid for a cubical room with a source at its center 
provided two opposite walls are completely absorbing. The a4 in the 
coefficient of the exponential term is the average value for the whole 
room, but the or4 in the exponent of this term is the average value for 
the four reflecting walls. Again if the cubical room has two pairs of 
opposite walls completely absorbing equation (6) is valid, but just as 
before the proper values for a• must be used. 

So far we have considered rooms of very simple geometrical shape and 
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we have located the source at the center in each case. We now consider 

the more general case, make the shape more complex, move the source 
from the center and thus approach a diffuse condition of the waves. In 
the interest of simplicity we shall be content with average effects and 
assume that the image sources are discretely located in zones--surfaces 
of concentric spheres with radii, p, 2p, 3p, ß ß .rip, ß ß - etc., where p is 
the mean free path between reflections (See Figure 4). The mean free 
path is the average distance between reflections which the sound estab- 
lishes on its many trips across the room from wall to wall, from wall to 
ceiling, from ceiling to floor, etc., as it travels in all conceivable direc- 
tions. At present, the centers of these spheres are assumed located at the 
source of sound. 

This means that we have replaced the source of sound and the walls 
of the room, by the source of sound surrounded by image sources 
located in evenly spaced discrete zones. To determine the energy den- 
sity produced in the enclosure by any zone, we proceed as in the case of 
the spherical room and follow through the growth of sound in the room 
as follows. 7 The rate of energy emission is denoted by 5, ½ is the speed of 
sound, p/c is the average interval of time between reflections, and R is 
the coefficient of reflection already defined. The amount of energy 
emitted into the room directly from the source during this interval is 
p•/c; the amount left over after the first reflection, or the amount 
emitted into the enclosure by the first zone of image sources during the 
same interval of time, is p•R/½; and that emitted in the same time into 
the enclosure by the nth zone is p•R"/c. Because of the meaning of the 
mean free path p, it takes just this interval of time for the energy 
flow to fill the enclosure once it starts to enter it. At once the energy 
density in the enclosure due to the nth zone is 

pE 
(9) 

½V 

It now becomes interesting to determine whether E• is an average 
value or is constant for all parts of the enclosure. The sound intensity 
varies inversely with the square of the distance from the source or its 
images. The intensity of the direct sound, then simply obeys the inverse 
square law. To investigate the point to point variation within the en- 
closure of the sound energy density due to the various zones we proceed 
as follows. For simplicity neglect differences in phase and assume that 

? Collected papers, Sabine. D. 43. Vibrating Systems and Sound, Crandall, p. 201. 
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Fro. 5. 

the image sources are evenly distributed over the zones. Call the surface 
density of image sources i. Then for the first zone, the radius of the 
sphere is p, and if we let d be the distance of the point of observation 
from the center of the sphere, then the energy density at the point of 
observation is given by the relation (See Figure 5), 

fa • 2•rp 2 sin ctdot Kp log, p+d (10) E•=Mi p2--2pdcosct+da d p--d 
where M' and K are constants. 

Now expanding log, (p +d)/(p -- d) we get 

Et=2K[I+ 1 (d•+ ¾x7/ '"] 
and for any zone 

E•=2 K• [1 + -•-x*• '/ ' 
For all but the first zone, (d/np) • is small and E= is essentially 

independent of d, the distance of the point of observation from the cen- 



1930] CARL F. EYRING 227 

ter of the sphere. This means that neglecting interference any zone 
beyond the first, viz. the rth zone, contributes approximately the same 
energy to all points in the enclosure, and therefore, that the energy 
density produced by this zone is constant throughout the room, and of 
a magnitude E, as given by equation (9). However, E0 and Et are 
average values, the actual point to point variation of the energy density 
being obtained for each case by the use of the inverse square law and the 
method of images. The actual energy density at a point in the enclo- 
sure, then, may be divided into three parts: (1) that which is produced 
by the source only and this varies inversely as the square of the distance 
from the source, (2) that which is produced by the first reflection image 
sources, and the point to point variation of intensity may be calculated 
for each particular enclosure; (3) that which is produced by all the re- 
maining image sources, a term with a magnitude •-•TE,,, which shows 
no point to point variation. 

In the following development of the sound intensity decay equation, 
we assume that the average densities E0 and EoR may be substituted for 
the actual densities produced at the point of observation by the source 
and the first reflection image sources respectively. Because of this the 
equation developed will not give an exact statement of the decay 
during the first two (p/c) sec. intervals, but this is not important be- 
cause from then on it will give the correct statement and in good 
experimental practice the rate of decay obtained need never depend 
upon the changes during these first two intervals. 

Hence when sound is established in the enclosure, the average density 
due to the source and all the zones of image sources is S**=•'•TE•. 
Remembering equation (9), we have Eo--p•/c V and at once 

S,•=Eo(lq-Rd-R•q-Raq - ... R'•+ ... ). (12) 

When the source is stopped all the image sources stop, and, of course, 
the energy supply also. At the source, or very near it, the portion E0 of 
the total energy at once vanishes. The intensity then remains constant 
for an interval p/c seconds, the time it takes sound to travel from the 
first zone to the point of observation announcing the stopping of the 
energy supply of this zone. At the close of this interval the portion EoR 
abruptly vanishes. This is followed by another interval of constant 
intensity. Then a sudden disappearance of the portion EoR • occurs. By 
this time the sound has traveled from the second zone to the point of 
observation and announces the stopping of the energy supply of that 



228 JOURNAL OF THE ACOUSTICAL SOCIETY [JA•., 

zone. Thus the decay continues and remembering that equation (12) is 
a geometric series, the energy density during the nth interval is 

Eo Eo(1-- R •) EoR • 
-- (13) 
1--R 1--R 1--R 

We developed this equation on the assumption that the point of 
observation was very near the source, which was also the center of the 
zones. There seems to be no a priori reason why the center should be 
chosen at the source rather than at some other point in the enclosure, 
but once the center is located it does not seem legitimate to move it 
about without a careful investigation of what would happen if it were 
not moved to each point of observation. 

Hence we select for study some point of observation not at the center 
of the zones. Waves leaving a given zone at the same instant will not 
arrive simultaneously at this new location. This means that unless one 
judges the energy density at a point by the flow of energy out in a given 
direction, equations (12) and (13) will not give a correct picture. But the 
decay history at a point as witnessed in a given direction is given exactly 
by equation (13). We propose to determine the decay history of the 
energy density by adding up the complete decay histories of all the directions; 
we shall not obtain the decay history by adding the instantaneous values 
of the directional histories, and then tracing the history of this instan- 
taneous sum. Therefore, let Co, e•, e2, etc. be the energy density due to 
the image sources, included within any solid angle &o. (See Figure 
Then 

By equation (13) 

and 

e0 =-•, E0, et= Et, etc. 

S•o • Een = 
0 

s,,-- Ze. eø(l --R•) 
0 1--R 

eoR • Ao• EAR" 

1--R 4•r I--R 

Now "n" is an integer and simply denotes during which p/c sec. 
interval the intensity is measured. Except in extreme cases, waves 
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which left simultaneously from a given zone will all arrive within the 
interval p/c sec. after the first arrival takes place. Hence we are justi- 
fied in adding up equations (14) for all directions keeping "n" constant. 
At once 

EoR • •Aw EoR • 
-- - (rs) 

That this summation is legitimate, even for the extreme cases where a 
slightly greater interval than p/c sec. is needed to have all the waves 
arrive, is illustrated by Fig. 6, in which it is clear that the staggering 
effect simply smooths out the distinct drops of the total energy but does 
not change the slope of the decay. From this it becomes clear that so far 
as the energy density at a point is concerned, "n" which was introduced 

TERM3 STAGGERED IN TIME TERMS .•IMULTANEOU$ IN TIME 

TIME TIME 

Fro. 6. 11htstraling titat lite staggering effect simply smootits oul lite 
disli•t drops b,tt does not change the slope. 

as an integer may after the summation is over, be considered, approxi- 
mately at least, a continuous function. This method of tracing the "life 
history" (equation 14) for each particular direction and then adding the 
"life histories" is essentially the uniqueness of the new analysis. 

In the old theory during the decay the energy density is assumed 
strictly continuous, but we have found this to be approximately true. 
The difference does not lie here. The old theory also assumes that the 
energy density at a point appears to have a continuous change as viewed 
from an element of surface. It tacitly assumes that an absorbing surface 
has the ability to register back into the oncoming wave the decrease in 
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intensity which it is causing. This is obviously not true; this particular 
absorption is registered in the outgoing wave, not in the oncoming wave. 
During decay the surface will receive from a given direction a constant 
energy flow for a time equal to the time it takes sound to travel the 
mean free path between reflections; then there will be an abrupt change. 
This constant energy flow followed by an abrupt drop, rather than a con- 
tinuous drop to this same level, means a greater absorption during the same 
interval of time and hence a more rapid decay of the sound. (See Figures 
7 and 8). This is in essence the physical difference between the founda- 
tion on which Sabine's formula has been erected, and the foundation on 
which we propose to erect a more general type of formula. The new type 
of equation must give Sabine's formula as a special case for "live" rooms 
and must do so simply because under these circumstances the two 
foundations become equivalent but not because the new picture ceases 
to hold for "live" rooms. 

Rewriting equation (15) and remembering that 
ct 

,•=-- (16) 
P 

we have 

EoR•tI•, 

1--R 

and remembering that 

we have 

pT c(1og• R)t 

cV(I--R) p 

and from what we have said above we are justified in assuming that t is a 
continuous function. 

We now have to determine p, the mean free path between reflections. 
Sabine • obtained the experimental value, p =0.62(V) •a, which reduces 
to p =3.7V/S for enclosures of reasonably compact proportions. Jae- 
ger a using the theory of probability and assuming a perfect diffuse con- 
dition of the sound waves calculated the number of reflections per 
second in the same manner that the impacts of molecules are estimated 
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in the kinetic theory of gases, and found p =4V/S. Recently Schuster 
and Waetzmann 5 have shown as we have also shown in the first part of 
this paper that for rooms of special shapes where an ordered not a diffuse 
condition of the sound waves is attained the mean free paths are as 
follows: cubical room, p = 2 x/3 V/S; cylindrical room with length equal 
diameter, p = 3x/2 V/S; spherical room, p = 6V/S. Probably the formula 
which will be used most is one based on a perfect diffuse condition of the 
waves, a special formula being written down for each enclosure which 
cannot fulfill this condition. To obtain the formula for the diffuse con- 

dition we shall use the value obtained by Jaeger for the mean free path. 
That this value may be used for "dead" rooms follows from the fact that 
Jaeger's analysis does not in any way involve the absorption coefficients 
of the surfaces. Of course, we must demand that the "dead" room shall 
produce a diffuse condition among the sound waves; the assumption 
that the image sources are located on the surfaces of concentric spheres 
tacitly implies this diffuse state. 

Substituting the value 

4V 

S 

in equation (17) we get the decay equation 

where 

As we have already 

(18) 

cS log, (1 -ot•)t 
p = poe- (19) 

4¾ 

(20) 

pointed out, for practical and experimental 
purposes, t may be considered continuous, and hence (19) may be 
thought of as derivable from a differential equation. a In a very "live" 
room (and in this analysis we may make the room as "live" as we please) 
the absorption per reflection is so very small that the energy density as 
viewed from an element of surface can be considered continuous. This 

means that we may follow the old theory 4 and write down the differen- 
tial equation for the sound intensity in a closed room as follows: 

Op 1 _ 

(20 
a Schuster and Waelzmann, loc. cit., have made use of a differential equation involving 

velocity potenthls. 
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where V is the volume of the room, S its surface, aa the average coeffi- 
cient of absorption, c the speed of sound in air, p the energy density and 
• the rate of sound energy emission, which is considered constant. 9 

co 

_ •-cS0c,t (22) •P--Po e "•V 

_ _ _ p = poe cs log, (I- oca)t (le) ,•V 

0 0.0 • 0.0• 0,06 0,0• O'lO 0. I2 0'I4 0'16 0'I8 0'20 0'22 
TIME FROM CUT-OFF IN SECONDS 

FIo. 7. Illustrating rate of sound decay in a room with volume 80400 cu. ft., 
surface 12180 sq. fl. and walls of average coe•icient of absorption 0.5. 

The solution of this equation under proper boundary conditions gives 
the following for the equation of decay 

C Ct aS 
p=poe-- t (22) 

4V 

and from this Sabine's reverberation time equation is obtained. Now 
Ot a Ota 

loge R=log, (1--aa)= -- [aaq--•q-•-q- ' ' ' ] (23) 
and when aa is very small as is true for very live rooms, 

log, (1-a•)= -a•. 
• Vibrating Systems and Sound, Crandall, p. 207. 
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This means that (22) is a special case of (19). The value of p0 is the same 
for both equations and may be derived from differential equation (21) as 
the maximum value reached by the energy density as a steady state is 
established. This agreement is natural since the steady state value 
depends simply on the conservation of energy principle, and not upon 
the rate of growth or decay when the sound source is turned on or cut 
off. This differential equation cannot give the correct damping factor, 

,o•_•, 
= o e- c s O•at (22) 8[-I'• =2 'P ,-o- •v 

----P= Po e •v 

•a - 0.1 

0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0,8 0.9 
•IME FROM CUT-OFF IN SECONDS 

Fro. 8. Illustrating rate of smtnd decay in a room with •,olu.•e 804• c•. ft., 
surf•e 12180 sq. fl. a• walls of at,erage c•ffiient of abs•ptio•t 0. I. 

because as we have already pointed out, it does not describe the true 
nature of the absorption. However, if we put •=0, substitute -logs 
(1 -a•) for a, and set down the boundary condition, p--p0 when 
we get a differential equation which gives (19) as its solution. 

In Figures 7 and 8, we have plotted equation (19) first with 1 con- 
sidered continuous, then with n =ct/p considered as an integer. The 
decay is shown to be greater than that for equation (22), the old decay 
formula, the difference becoming very marked for "dead" rooms. 

To obtain the reverberation time formula involving the true nature 
of the absorption we make use of equation (19) and write 

cS logs (1--a•)t] 
C- 

p 4 V 
__-- = 10 • 
p• cS 1og• (1 

e 

4I' 
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and put (t• - tO -- T, the reverberation time. 
At once 

logo 10 •= -cS 1og• (1 -a•) T 
4V 

4 log, 10•V 0.05V 
T= - (24) 

cS log, (1--aa) --S log• (1--a•) 

From equation (23) it follows at once that for very small values of 
as the reverberation time formula (24) becomes 

0.051 r 0.05V 
r-- =-- (25) 

which is Sabine's formula--a special case of the more general formula 
which we have developed. 

• T = _ S 

\•\ o.osV 
• • ------T= Sza 
o o •= o.osV 
• S 

O O.I 0.2 0.3 0.4 0.5 0.0 0.7 0.8 O.• I.O 

Fro. 9. Comparison of r•b•ation 
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Although Sabine's formula had no meaning for a, = 1, complete ab- 
sorption, the "new" formula does give the value zero, Curves com- 
paring the new and old formulae are given as Fig. 9. These curves show 
a wide difference for large values of absorption but approach each other 
for small values of absorption. Thus we have established (24) as the 
general reverberation time equation for all types of rooms in which we 
can be certain that a diffuse condition of energy density is achieved. If 
we wish more generality, and certainly there will be cases as we have 
already pointed out where an ordered condition may exist among the 
sound waves, we shall not need to change the equation's form which is 

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 
TIME IN SECONDS 

Fro. 10. Co.•parlson of sound decay. 

intimately tied up with the nature of the absorption, but we will need 
to substitute a constant k for 0.05 and then ascertain for each special 
problem the value of k to he used, remembering that the mean free path 
between reflections is the physical quantity that controls its magnitude. 
How the averaging represented by equation (3) is modified to obtain the 
proper value of a• will depend on the nature of the ordered condition 
which exists among the sound waves. The method of images as used and 
discussed especially in the first part of this paper may be an aid in deter- 
mining these two constants as may also the following table. 

]leah free path Constant k 
Sabine's experimental value ............. 3.7 V/S O. 045 
Statistical value .................... 4.0 O. 049 

Cubical Room ................... 3.5 0.043 

Cylindrical room (length=dia.) ......... 4.2 0.051 
Spherical room ........................ 6.0 0. 073 
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EXPERIMENTAL RESULTS 

The fact that the experimental results obtained by Sabine checked his 
formula does not detract from the validity of formula (24) since the 
two formulae become identical for very live rooms, the type in which 
Sabine worked. We now wish to present evidence for the applicability 
of the general formula to work with very "dead" rooms and the failure 

TIME OF REVERBERATION= 0.535-0.225=0.31 SECONDS 
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FIG. II. A typical experimental curve obtained in reverberation time meas•trernotls, 

of Sabine's formula for such cases. Formula (24) is used without modifi- 
cation because the shape of the room, and the location of the absorbing 
material, source and point of observation guarantee a diffuse condition 
of the sound waves. Equation (24) may be written thus 

cS log (1-ot.)t 
log O = t-log pa (26) 

4V 
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which shows that the time plotted against the logarithm of the sound 
energy density is a straight line. (See Figure 10). Since in a "dead" 
room the energy steps are rather marked, a picture of a decay will not 
be a smooth curve. The irregularity will also be greatly enhanced by 
interference phenomena which have not been considered in this paper. 
(See Figure 11). 

Making use of equation (26) we may write 

M ICROPHO•IE Z2• 

log--= --K(t•--tt). (27) 
P2 

AMPLiFiER RECTIFIER 
t----tA"ø F'LTER i 

,•PARKx-GAP$ [ RELAY 
PHOMOGRAP• 
TURNTABLE 

Fro. 12. A block schematic of the reverberation time measuring apparatus used. 

If m is the intensity of the sound at some specified instant, h =0, such as 
the time of sound cut-off, and if 0n is a minimum intensity which marks a 
relay cut-off, then associated with each value of m will be a certain time 
t2. If, therefore, we give pt various values by changing the output of a 
receiver and obtain the corresponding values of l.,, and if the power input 
measured in db corresponding to each receiver output is plotted against 
each corresponding time between sound cut-off and relay action (t2), we 
shall get a straight line with the same slope as equatioa (26). From this 
line the time for a 60 db drop may be obtained and this is the reverbera- 
tion time. A typical curve obtained for the sound stage is shown in 
Figure 11. A block schematic of the apparatus is shown in Figure 12 
and the plot of db attenuation of the maximum input is used instead of 
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the power input measured in db. The slope of the line, which is all we 
wish, is not modified by this procedure. The details of the apparatus 
and the technique of its use have been described by Wente and Bedell in 
the paper, "Chronographic Method of Measuring Reverberation Time." 

TABLE [ 

INSULATING •IATER1AL ONLY 

Volume of Room 73,475 cu. ft. Total surface 11,553 sq. ft. 
Ins. Material=8401 sq. ft. Concrete, glass, etc.=3,152 sq. ft. 

a for Insulating Material 
Frequency Reverberation Time a• 

New Formula Sabine's Formula 

120 O. 73 sec. O. 35 O. 48 O- 59 

240 0.49 0.47 0.65 0.89 

500 0.38 0.56 0.77 1.14 

1000 O. 34 O. 60 O. 82 1.28 

2000 0.34 0.60 0.82 1.28 

4000 0.32 0.63 0.86 1.37 

TABLE II 

IXlSULATING MATERIAL AND •IoNK'S CLOT• CURT&INS 

Curtain area = 1,670 sq. ft. Ins. material only 6887 sq. ft. 
Concrete, glass, etc. 2,996 scI. ft. 

Frequency Reverberation Time ee• a for Combination 

I20 O. 52 O. 45 1.10 

240 O. 40 0.54 1.03 

500 0.32 0.62 1.00 

1000 0.31 0.64 1.01 

2000 0.28 0.67 1.13 
4000 0.26 0.70 1.27 • 

• No significance should be attributed to these values which are greater than unity since 
the additional absorption was introduced into a room which was already very "dead," and 
hence experimental errors are bound to be large. 

We wish to emphasize the importance of making the time from sound 
cut-off to relay action sufficiently long so that enough reflections are 
included to give a good value of the mean free path between reflections. 
This means that for very high damping a time longer than the rever- 
beration time will need to elapse between the stopping of the sound and 
the operation of a relay in the instrumental method of measuring rever- 
beration time in order that "n" may be sufficiently large to insure the 
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use of a good number of terms of the geometric series. Only in this way 
will the walls have a chance to record their effect upon the sound decay. 
To make this more clear; suppose a source is 0.2 second from the point 
of observation and that the time of reverberation is 0.15 second. So 

long as the relay cuts off 60 db below the maximum intensity the only 

MONK• CLOTH CURTAINS PULLED TO CORNERS 

CURTAINS SPREAD OUT 

120 240 500 I000 2000 
FREQUENCY IN CYCLES PEP. SECOND 

Fro. 13. Reverberation time-frequency om,es for sound stage. 

4000 

INSULATING 
MATERIAL AS MOUNTED 

leo 240 500 moo0 2000 4000 
FREQUENCY IN CYCLES PER SECOND 

FIa. 14. Coe.•i½ient of absorptian-frequency curve for insulating material on walls and ceiling 
of soltnd stage, as calodated by the more general formula. 

time possible to measure is 0.2 second, the time it takes the sound to 
travel from the source to the point of observation. However, if the 
intensity of the sound is increased and if the threshold of the relay cut- 
off is lowered so that the time measured is for a 120 db drop, then the 
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I.O 

REVERBERATION TIME CALCULATED 
FROM SABINE•'S FORMULA ASSUMING 
THE ABSORPTION COEFFICIENT AS 
CALCULATE0 USING •iEW FORMULA 

------ACTUAL REVERBERATION TIME MEASURED 
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F/o. 15. Comparison • reverberat•n times as measured and I•ose calc•tlated using Sabine's 
f•m•da and coe. ficients • abs•p•on shoun in Figure 14. 
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F•O. 16. Comparison ofcoe.•identsofabs•ptio• as cMcul•edby Sabine's 
and themoregeneralf•m,dauMngreverb•atlontlm•asmea•tred. 
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time observed is 0.3 second and the reverberation time is 0.15 sec. 

Thus, a reverberation time approaching a zero value may be measured. 
The results of measurements made in the Sound Stage, Sound Picture 

Laboratories, Bell Telephone Laboratories, Inc., are summarized in the 
preceding tables and illustrated in Figures 13 to 16. 

SU•AR¾ 

We have shown that a correct picture of sound absorption in an en- 
closed room leads to a general reverberation formula of the form 

r = (28) 
-S log, (1 

The manner of the absorption, which has been described in detail in this 
paper, is responsible for the logarithm factor and therefore the new 
form; the mean free path between reflections which is independent of 
the nature of the absorption controls the magnitude of k; and or, is 
obtained by assigning proper weights to the various elements of surface. 
For a diffuse condition of sound energy, probably the condition most 
frequently encountered, k =0.05 and ot, is obtained from equation (3); 
but for each ordered condition of the waves a particular value of k must 
be used and a, must be obtained by proper averaging. It is thought that 
the method of images presented in this paper will be of aid in solving 
each particular problem at hand. The practical importance of the new 
type formula should be emphasized because it shows that a "dead" room 
may be obtained by the use of less absorbing material than that calcu- 
lated by Sabine's formula. An example will suffice. To obtain a re- 
quired reverberation time of 0.54 second, an engineer using Sabine's 
formula would have specified 8400 square feet of absorbing material for 
a room such as the Sound Stage, but without knowing it, he would have 
obtained instead a reverberation time of 0.34 second; using the new 
formula he would have specified 6200 square feet of absorbing material 
securing a saving of 26% in material and the reverberation time 
desired. 


